# AUTOMATIC POLARITY ROTATION

Mike Melum, KL6M

Anchorage, Alaska

2023 Central States VHF Society Conference Little Rock Arkansas

# Contents

- History
  - Evolution of my EME system
  - Original feed mount with polarity rotator versus current
- Geometric Polarity and Faraday Rotation and Manually Compensating
- Automatic Rotator Design
- Results





- First EME RX
- Fixed Horizontal 70cm Array
- Lots of Faraday lock-outs and one-ways

#### Acquired a Dish - Sept 1999



## On the moon - Oct. 2000



#### Guyed Center Supported Rotatable Feed



# Current Feed System (2003)



#### 222 Feed with Polarity Rotator



# Geometric (Spatial) Polarity



#### SkyMoon (by W5UN)

| 🔀 Skymoon Win                                 |                                         |            |           |               |
|-----------------------------------------------|-----------------------------------------|------------|-----------|---------------|
| File EME Dir St                               | ation2 View Help                        | About      |           |               |
| HOME: BP51DC                                  |                                         |            |           |               |
| Thu Mar 18 20:07:20 2021 Quiet Sky Az: 4.7° E |                                         |            |           | l: 11.4°      |
|                                               | L. L. L. L                              | waxing     |           |               |
| Moon Az.                                      | Declination                             | Perigee    | Sun Az.   | Sky Temp      |
| 82.96 deg.                                    | 18.44 deg                               | in 12 days | 146.9 deg | 362° k        |
| Moon El.                                      | Range                                   | Apogee     | Sun El.   | Path Loss     |
| 16.40 deg.                                    | 405013.4Km                              | in O days  | 24.2 deg  | Z.ZOUD        |
| Moon View                                     |                                         | the second | 1.10      | 4.83db        |
| 1. A.     | _0.S <sup>6</sup>                       | 742 - S    | Ro again  | My Doppler    |
| - <sup>n</sup> z                              |                                         | er d       | · Rol     | 222 hz        |
|                                               | 2000                                    | 53 C.      | Saran.    | Stn2 Doppler  |
| -                                             | IN JAKLEM                               | MAV ~      | L.S.      | 158 hz        |
| 70 V                                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ್ವಿ ್ರಿ    |           | Stn2 Grid     |
| 15 AS                                         |                                         | 7 >        |           | CheQ Delarity |
| 105 1                                         | 2.                                      | 3 MOON (   |           | 6° ccw        |
| 20° ma                                        |                                         | 5 ~ ~      |           | Stn2 Azim     |
| And I                                         | - T                                     | 57         | 8 30      | 148.6 deg     |
| ر کړ ک                                        |                                         |            |           | Stn2 Elev.    |
| V 6                                           |                                         | U          |           | 62.7 deg      |
| distanting the                                |                                         | ll l       |           | ☐ SkyView     |
|                                               |                                         |            |           |               |

#### **Faraday Rotation**

In this example the lonosphere causes clockwise Faraday rotation on the transmitted signal

> The reflected signal returning from the moon *continues* clockwise rotation as it passes through the ionosphere

# Manually Compensate for Faraday



- Determine Geometric Polarity
  - Sked Enter Grid
  - CQ (random) click map
  - Remember that angle
- Sweep for signal & peak
  - Subtract = difference
- Rotate difference past Geo

# Calculated Approach to Compensate for Faraday



#### Another Example



T = Tx polarity D = Geometric R = Best signal T = 2D - R  $T = 2 \times -75 - 45$  T = -195 IF T > 90 THEN T - 180 IF T < -90 THEN T + 180 T = -195 + 180 T = -15

# Why Do All This ?

27° polarization error = 1dB loss



To keep the signal losses below 1dB, the polarization error must be less than about  $\pm(20-30)^{\circ}$ . The good news is that the signal loss within the  $\pm 20^{\circ}$  region is very small.

# **Automatic Polarity Rotation**



#### **FEATURES**

- 1 Polarity display (2 digits + sign LED (CCW)) +/-99 DEGREES
- 2 0 degree LED (PARK)
- 3 Automatic TX positioning triggered by T/R signal (AUTO)
- 4 Reset (power off-on)
- 5 Geometric position memory (GEO)
- 6 Received polarity memory (RX)
- 7 Manual polarity control via M-O-M Toggle switch
- 8 Automatic park (Hold RX and GEO for 1/2 second)

# **Operating Procedure**



#### **OPERATING PROCEDURE**

1. First look up the geometric or spatial offset and rotate the feed to that setting and store that angle. (Press Geo)

2. Then rotate to best signal and store that angle. (Press RX)

3. Then the processor will compute the best angle to TX.

4. The processor will sense when I switch from R to T and rotate automatically to the calculated transmit polarity.

5. When I go back to R it will return to that stored receive polarity.

# System Block Diagram



#### Gear Motor



6 volt to 12v dc motor



### Prototype



#### **Rotor Interface**



### **Printed Circuit Board**





## **Overall Flow Diagram**



## **Rack Mounted Control Panel**



# Results

- Generally effective, not perfect.
- Noise issues due to 150 ft. Cable?
  - Adding caps and ferrites
- Cross over encoder Z pulse resets counter
- Motor slow down and stopping
  - Probably due to voltage drop
  - Doubling up conductors
- VERY CLOSE !!

This presentation, paper, and details at https://kl6m.com/polarity